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Abstract. Automated social media bots have existed almost as long as
the social media platforms they inhabit. Their emergence has triggered
numerous research efforts to develop increasingly sophisticated means to
detect these accounts. These efforts have resulted in a cat and mouse
cycle in which detection algorithms evolve trying to keep up with ever
evolving bots. As part of this continued evolution, our research proposes
using random string detection applied to user names to filter twitter
streams for potential bot accounts and thereby generating annotated
data.

1 Introduction

Automated social media accounts, often called “bots”, are increasingly used on
many social media sites. Ever since social media sites built Application Pro-
gramming Interfaces (API’s) that allow their platforms to integrate with other
platforms and applications, various actors have developed computer routines
that conduct a variety of automated tasks on the respective social media ecosys-
tems. While some bots are designed for positive purposes [9], many others range
from nuisance (i.e. a spam bot) to propaganda [14], suppression of dissent [20],
and network infiltration/manipulation [1,7]. They have recently gained wide-
spread notoriety due to their use in several major international events, including
the British Referendum known as “Brexit” [10], the American 2016 Presidential
Elections [2], the aftermath of the 2017 Charlottesville protests [8], and most
recently with less publicized reporting regarding the conflict in Yemen [13].

As these bots have proliferated and their use is being discussed broadly in
the media and political bodies, researchers have increasingly developed methods
to detect these accounts. The same openness and ease of use of the social media
APT’s that facilitates the creation and use of automated accounts also facilitates
the collection of data used to detect them. As detection efforts proliferate, bot
engineers change and adapt in order to survive and succeed in a dynamic envi-
ronment. The requirement for higher accuracy in the midst of a changing signal
motivates our efforts to improve not only the models that detect bots, but the
labeled data that is used to train them.
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Our work makes two primary contributions to the literature. First, we pro-
pose a novel random string detection model that is specifically designed to detect
15 character randomly generated strings. When applied to the screen name field
of Twitter data, this technique is able to easily filter accounts that are likely bot
accounts. Second, by applying this filtering technique to a large sample collected
from the Twitter Streaming API, we have produced a large and diverse anno-
tated data set for use in training more robust specialized and general purpose
bot detection models.

This paper begins with a brief description of the background of general bot
detection, as well as past efforts perform random string detection. We will then
describe the models and algorithms that we developed for random string classi-
fication, as well as methods that we used to evaluate them on the narrow tasks
that they were created for. Finally, we describe how we’ve applied this algo-
rithm to create a large and diverse annotated Twitter bot data set for use by
the research community.

2 Related Work

2.1 Twitter Bot Detection

Although early work on classifying Twitter accounts dates back to as early
as 2008 [11], the deliberate detection of automated accounts on the Twitter
Platform began in earnest in 2010 when [3] conducted three-class classification
(human, bot, cyborg) using an ensemble model. In 2011, a team from Texas
A&M became the first to use honey pots to detect thousands of bots [12]. These
honey pots used bots that generate nonsensical content, designed only to attract
other bots. The Texas A&M bots attracted thousands of bots, and generated a
labeled data set that has been used on many later research efforts. This honey
pot method was repeated by others to create similar data sets in other parts of
the world [19].

In 2014, Indiana University and the University of Southern California
launched the Bot or Not online API service [4]. This used traditional classifica-
tion models trained on the Texas A&M dataset to help users evaluate whether
or not an account is a bot. Bot or Not leverages network, user, friend, temporal,
content, and sentiment features with Random Forest classification.

In 2015 the Defense Advanced Research Projects Agency (DARPA) spon-
sored a Twitter bot detection competition that was titled “The Twitter Bot
Challenge” [19]. This four week competition pitted four teams against each other
as they sought to identify automated accounts that had infiltrated the informal
Anti-Vaccine network on Twitter. Most teams in the competition tried to use
previously collected data (mostly collected and tagged with honey pots) to train
detection algorithms, and then leverage tweet semantics (sentiment, topic analy-
sis, punctuation analysis, URL analysis), temporal features, profile features, and
some network features to create a feature space for classification. All teams used
various techniques to identify initial bots, and then used traditional classification
models (SVM and others) to find the rest of the bots in the data set.
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Most recently, the team from Indiana University have re-branded Bot-or-Not
to Botometer, increasing the set of features to 1,150 account related features
[5]. Their team compared Random Forests, AdaBoost, Logistic Regression and
Decision Tree classifiers and still found that Random Forests performed best.
They also attempted to update their training data by manually annotating tweet
accounts, and merging this with the original Texas A&M Dataset (collected in
2011).

The continued use of the 2011 Texas A&M data highlights the difficulty that
researchers have in creating and/or updating the labeled data that is used train
algorithms to find these automated accounts. The use of aging training data for
bot classification also ensures that emerging bots are likely to avoid detection.
Additionally, since bots have a variety of purposes as well as a spectrum of actors
that create/use them, the collection technique used for labeled data will bias the
detection toward that family of bots. For example, the honey pot collection
technique will bias toward bots that randomly follow accounts, but may not
detect intimidation bots that conduct targeted following and messaging.

2.2 Classifying Algorithmic Character Strings

Classifying strings as random or not random in order to filter or flag anomalous
events has a limited background.

Several methods have been proposed for identifying or highlighting the ran-
domness of character strings. Some have proposed leveraging Shannon’s Entropy
calculation [18] as a method for sorting strings by a measure of randomness. Some
cyber security research teams have proposed a similar detection methods in order
to detect domain names that are generated by Domain Generation Algorithms
(DGA). These teams have separately used Kullback-Leibler Divergence [21], a
dictionary approach [15] and Markov modeling [17].

The past research most closely connected to our effort was conducted by
LinkedIn in 2013. At that time [6] presented the application of the Naive Bayes
model on Character N-grams features of LinkedIn account names in order to
identify spammy accounts (first and last name as provided by the account owner).
This effort was very effective, and replaced the legacy spam detection models
that LinkedIn was using on their OSN. To date, our team has not found any
team that has replicated a similar approach to Twitter screen names.

2.3 Project Background

Our team has focused on detecting, characterizing, and modeling the behavior of
bots, bot networks and their creators. In doing this we’ve studied several recorded
bot events. Recently we focused on a known and publicized bot attack against the
Atlantic Council Digital Forensic Labs (DFR Lab), and tangentially against the
NATO Public Affairs Office. This attack primarily occurred between August 28
and August 30, 2017. We also focused on a recorded bot harassment event against
journalists in Yemen [13]. In both events we observed numerous bot accounts that
used 15 character randomly generated alpha-numeric strings for the screen name.
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Examples of this include Wy3wU4HegLIvHgC, 5JSQavWW3tvQwAT7T,
and gG6RKc6QBqOLKyU (these are not real Twitter accounts). Note that
these randomly generated strings always sample from upper and lower case
alpha-numeric characters. Observing this phenomenon motivated the construc-
tion of this algorithm and its application on Twitter at large in order to observe
other bots and bot actors that are using these same type of bot screen names.
More importantly, we hope this dataset can be used as a large and diverse anno-
tated bot training data for larger and more comprehensive machine learning
models.

3 Modeling

3.1 Feature Engineering

In order to develop a random string detection model for this unique case, we
constructed training data consisting of 4,000 non-random Twitter screen names
(randomly sampled from Twitter and manually verified as non-random) and
4,000 randomly generated 15 digit strings. We then developed a combination of
heuristic filtering and traditional machine learning models to label the string as
random or not random. This development is described below.

For feature engineering, the primary feature that we extracted from the
strings was character n-gram. For string s with length m, a character n-gram is
the (m —n + 1) sequential substrings of length n found in string s. In our case,
we explored several settings for n, to include using multiple values in the same
feature set (i.e. using both diagrams and trigrams).

We then transformed the resulting sparse character n-gram matrix using term
frequency-inverse document frequency (TF-IDF). TF-IDF is defined in Egs. 1
and 2 below, and is used to scale the characters by the information that they
provide. In our case, frequent characters in a string provide information, but not
if they’re frequent in all of the strings. To calculate the IDF for character ¢ in
strings s, we take the logarithm of the ratio of the total number of strings in
corpus S by the number strings that contain ¢, as shown in Eq. 1.

N
{ce S:ce s}

idf (¢, S) = log (1)
We then calculate the TF-IDF for character c¢ in string s found in corpus S
as follows

tfidf(c,s,S) = tf(c, s)idf (c, S) (2)

This therefore weights characters that have a high local frequency but a
lower global frequency. At first it may seem that TF-IDF is unnecessary since
each character n-gram is equally likely in random strings, given a strong pseudo-
random number generator. n-grams are not equally likely for human generated
strings, however. Given this fact we felt it appropriate to transform the data
with TF-IDF.
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These features were merged with several other features. We started by merg-
ing the normalized count of upper case, lower case, and numeric characters.
n-gram generation by default converts all text to lower case. We maintained this
default behavior, but saw that the number of upper and lower case in letters
in particular provided a strong signal. Since our training data contained some
human generated strings that were not 15 characters in length, we normalized
these counts.

Additionally, we included the Shannon string entropy in our feature set.
Shannon string entropy, while not strong enough to use by itself in our case, still
provides a strong signal that we felt would be useful. We will test this assumption
below. Shannon entropy is defined in 3, where p; is the normalized count for each
character found in the string.

H(A) == pilogsp; (3)
i=1
The A full table of features is given in Table 1.

Table 1. Features for random string detection

Feature Type Description

2-3 character N-gram | Numeric | Term frequency inverse document frequency
of n-gram

No. lower case Numeric | Normalized count of lower case letters

No. upper case Numeric | Normalized count of upper case letters

String entropy Numeric | Shannon String entropy

We used the scikit — learn package [16] to explore and build the machine
learning classification model for Random Strings. We evaluated Naive Bayes,
Logistic Regression, and Support Vector Machines (SVM) with 10 fold cross-
validation. The results are presented in Table2. We conducted model compar-
isons between these models, and found that the SVM models provided Highly
Significant Improvement in all cases (p.value < 0.001). Given these results, we
used SVM for our production model.

Table 2. Model performance in classifying randomly generated strings for screen-names

Model % Correct | Kappa
Naive Bayes 93.3% 0.8659
Logistic regression | 94.25% 0.948
SVM 97.4% 0.975
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Before predicting whether or not a string was random, we first applied several
heuristic filters. These verified that (1) the string was 15 characters in length,
and (2) contained at least one capital letter, lower case letter, and numeric
digit. This final filter was applied given that 15 character strings have a 0.02%
chance of not containing a capital or lower case letter and a 7% chance of not
containing a numeric digit. This heuristic was applied given that precision was
a higher priority than recall.

In Fig. 1 we evaluate the best value of n (number of characters for n-gram)
as well as whether or not using Shannon’s Entropy as a column feature provides
leverage in prediction. In this visualization we see that digrams with Shannon’s
entropy provides the best leverage in predicting random strings.
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Fig. 1. Evaluating n (number of characters in n-gram) and use of Shannon’s entropy
as a feature

In addition to exploring the feature based machine learning models discussed
above, we also explored the use of Markov model of character sequencing, but
found during initial exploration that this did not have sufficient power to classify
the strings given the inherent random nature of human generated screen names.
Additionally, we explored using Shannon entropy as the only measure for filter-
ing these strings. Once again, while helpful, this method did not demonstrate
sufficient power for our purposes.

3.2 Model Deployment

Our primary use for the algorithm was to filter accounts with 15 character ran-
dom strings from a Twitter data stream. To do this we ran a random sample from
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the Twitter Streaming API from 14 December 2017 to 10 January 2018. During
this time the stream collected approximately 33 million tweets. This collection
was done without any text or geographic filters, and stored the raw JSON files
that are returned by the Twitter API.

Having performed the collection, we next applied our algorithm to all 33
million tweets, filtering out all accounts that were labeled as having 15 digit
randomly generated screen name. This produced a collection of 487,000 tweets
from 235,000 unique accounts.

4 Model Evaluation

Given the desired use case of annotating diverse bot accounts, we conducted two
evaluations on our results. First, we wanted to estimate the false positive rate on
our random string detection, since false positives have a high likelihood of not
being an autonomous account. To accomplish this we randomly selected 1,000
of the screen names that were labeled as random, and manually identified those
that contained clear words or acronyms. Given this method, we estimate that
our false positive rate is 5.6%.

Additionally, we wanted to estimate the percentage of random charac-
ter screen name accounts that are autonomous, or appear autonomous. In
other words, how many of our true positive random string accounts are truly
autonomous. To estimate this, we randomly sampled 100 accounts, verified that
the user name appeared random, and inspected the account in the Twitter web
client. Of the 100 that we manually inspected, five were suspended, eight pro-
vided no results (most likely the account was closed by the user), and all others
exhibited autonomous behavior. After thoroughly evaluating these 100 randomly
sampled accounts we were satisfied that this methodology provides annotated
bot data that is at least as accurate as honey pot data, and likely has a wider
range of bot types.

4.1 Data Characterization

One of our first tasks in exploring the data was to check on those features that
are highly indicative of an autonomous account to see if our data exhibited
these tell-tale characteristics. In general, autonomous accounts produce tweets
at a much higher volume and rate than human actors. The mean number of
tweets for our accounts was 7,918 (median=1,125). In general bots have a low
number of followers (most people don’t follow bots), but they tend to follow
many accounts, trying to build influence. Following this pattern, the median
number of followers is in our data set is 55, but the median number of accounts
they follow is 130.

94% of the roughly 500,000 tweets in this dataset are associated with seven
languages. Somewhat surprisingly, the volume associated with Japanese and Ara-
bic accounts is greater than those associated with English speaking accounts.
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A full breakdown of the languages and a short general description of our obser-
vations are provided in Table 3. Only 674 tweets contained coordinate locations,
and these locations are strongly correlated to the languages mentioned below.

Table 3. Characterization by language

Language % Total | General description

Japanese | 184,385 | High concentration of anime media sharing

Arabic 111,523 | High percentage of young accounts, some
automated Koran passage sharing

English 94,804 | Contains a high number of non English hash

tags
Korean 41,870 | Varied
Thai 14,195 | High concentration of adult content

Russian 13,461 | Varied

The mean age of the accounts is 274 days, with 50% of the accounts created in
the last 150 days and 75% of the accounts younger than 1 year old. The relative
young age of these accounts is highly indicative of their automated behavior.
The oldest accounts are associated with English account settings, and date back
to 2008.

Given the fact that our data set contains primarily bot accounts, we observed
a number of account suspensions during the course of our study. Between mid
December 2017 and mid March 2018, 23,532 accounts (~10%) were suspended
by Twitter, while 2,201 accounts (~1%) were removed by the user. As the media
and politicians put pressure on Social Media companies, the natural response is
to increase their policing of this autonomous behavior on their platforms.

5 Conclusion

Research in this area is limited by a rich enough data set that supports identifi-
cation of the wide range of types of bots, and that is sufficient to support studies
of bot-evolution. While the data used herein begins to address this issue, it is by
no means comprehensive and needs further expansion. We are working on such
expansion. However, restrictions on data sharing make it difficult to share this
data. Consequently, we are also working on data format that can be shared.

Bots are part of the conversation in social media. But not all bots are the
same. They vary in what they do, how they do it, and intent. While some bots
act independently others work in concert and still others are part of a cyborg -
a human-bot partnership. Research is needed to characterize types of bots and
their evolution. Research is also needed to identify the mapping between types
of bots in use and types of information maneuver or social-group creation that,
that type of bot supports or thwarts.
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6 Future Work

Our future effort begins with the exploration of this dataset so that we can
cluster these accounts by type and function. We then intend to develop and
train several specialized as well as a general purpose bot detection algorithms
for use in detecting and classifying bots. Once complete, our effort will shift to
the detection and characterization of bot networks and the actors behind them.
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